





## Relative impact of multiple human stressors to ecosystems in Black Sea Romanian coastal, transitional and shelf waters (EcoImpactMapper tool)

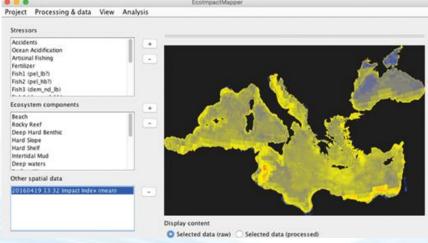
### Alina Spinu, Laura Boicenco, Luminita Lazar, Valentina Coatu, Andra Oros NIMRD "Grigore Antipa"

Final Meeting - ANEMONE Project 4<sup>th</sup> – 5<sup>th</sup> of March 2021, On-line Meeting












The EcoImpactMapper is an open source software for **Mapping Human Impacts** on **Marine Ecosystems** with an **Additive Model** (Halpern et al., *Science*, 2008)

The model evaluates where human stressors (e.g. fishing with different gear types, shipping lanes, water pollution with different substances) *overlap spatially* with ecosystem types (e.g. seagrass meadows, soft material sea bottom) or important species that are sensitive to these stressors and it calculates a human impact index.

By now, the model has also been used for regional human impact assessments for e.g. the northern Hawaiian islands, the California Current region, the waters of British Columbia, the Baltic Sea, the waters off Masachusetts, the eastern North Sea and the Mediterranean.



The window contains a list of stressors, a list of ecosystem components, a list of model outputs, and a graphics panel displaying the spatial data (model inputs or outputs) selected by the user







The additive model as suggested by Halpern et al. uses three kinds of input data:

- Di: **Spatial distribution of stressors**, such as fishing effort or shipping intensity, as regular grids. Stressor data are log(x+1)-transformed and rescaled so that the maximum is 1. This transformation and rescaling can optionally take place in the EcoImpactMapper.
- ej: **Spatial distribution of ecosystem components** as regular grids, e.g. continental slope soft bottom habitat either as presence (1) and absence (0) or, in some cases continuous data like probabilities of presence.
- μi,j: **Sensitivity weights** numerically representing the sensitivity of ecosystem component j to stressor i. These weights are typically derived by expert judgment.







#### Workflow for creating human impact maps with the EcoImpactMapper



CROSS BORDER







#### The EcoImpactMapper tool spatial outputs

- **Ecological diversity index** The index is simply the sum of all ecosystem component data layers
- **Ecological sensitivity index** The index is like an ecological diversity index, but each ecosystem component is weighted with the mean of its sensitivity weights for all stressors. A high ecological sensitivity index means that there are many ecosystem components that are sensitive to many stressors.
- Unweighted stressor index The index is the simple sum of all processed stressor data layers
- Weighted stressor index is also a sum of processed stressor data layers, but each stressor is weighted with the mean of all ecosystem components' sensitivity weights for this stressor
- Human impact index and stressor/ecosystem component contributions it supports:
  - different *models for aggregating the effects of multiple stressors* on a given ecosystem component:
  - Additive effect: For each ecosystem component, the impacts from each stressor simply add up, as in Halpern et al.'s original paper
  - Dominant effect: For each ecosystem component, only the stressor having the largest impact on that ecosystem component is considered in each grid cell (i.e. the dominant stressor can be a different one in different places).
  - Antagonistic effect: For each ecosystem component, the impacts from all stressors add up, but each additional stressor is multiplied with a smaller weight.
  - different ways to aggregate the impacts on several ecosystem components.
  - > As sum of impacts on all ecosystem components in a grid cell,
  - As mean of impacts on all ecosystem components in a grid cell









#### **ROMANIAN STUDY CASE**

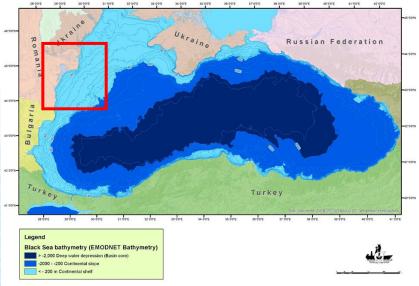
!!! Work in progress !!!

The objectives of this exercise are:

- To test the functionality of the EcoImpactMapper tool and how it can be applied in the Black Sea region
- To select and process the data (data format, their coverage, representation and type biological, chemical, human activities etc) we need to calculate the ecological indices and the cumulative impact
- to map the potential cumulative impacts of multiple human activities and stressors on the ecosystems in the western parts of the Black Sea







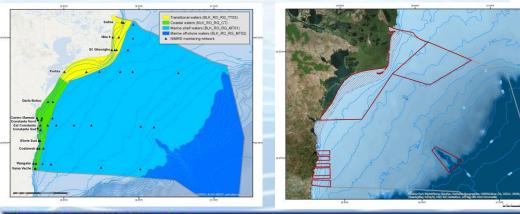



#### Step 1: Establishing the study area boundaries and the size of grid cell

The study area:

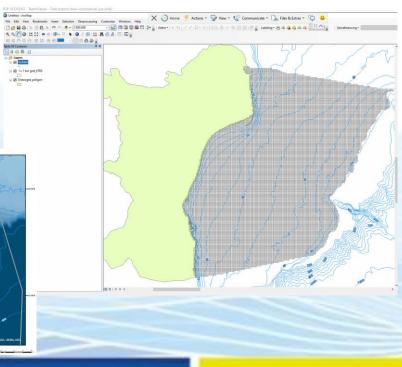
- overlapping to Romanian territorial sea, contiguous zone and partial to economic exclusive zone.
- The geomorphological conditions the study area is located between 0-200 m depth on the continental shelf - in the Northwestern largest extension of the entire basin of the Black Sea due to large amounts of sediments from the river system and configuration basin and it narrows from north to south. It is characterized by a uniform relief, with gently slopes and is covered with terrigenous deposits.










- MSFD marine reporting units coastal, transitional and shelf waters
- The hydrological conditions are variable, caused by a large part of the East European drainage basin entering the north – west part of Black Sea
- The area is affected by activities taking place, both on land and in the marine and coastal waters
- ~ 30% of case study area consists of Natura 2000 sites



The EcoImpactMapper reads all data as **regular grids** from commaseparated value (CSV)

- Cell size 1 x 1 km grid
- ETRS\_1989\_LAEA projection system





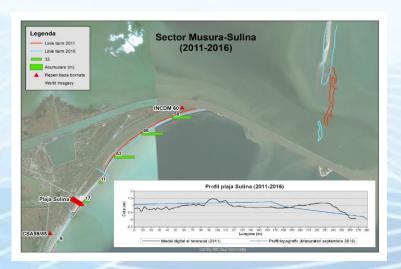


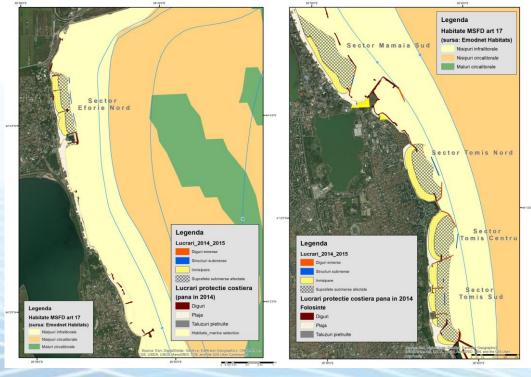


#### Step 2 – Identify the stressors in the study area

| Codo | Stroccore                                                   | Stronger 1                                                                                                  | Pressures                                                                                                                                                                    | Poprocontation                                                                                                                                                                                                                                             | MCED activition                                                                                                  | Observations                                                                                                                           |
|------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Code | Stressors                                                   | Stressors1                                                                                                  | Pressures                                                                                                                                                                    | Representation                                                                                                                                                                                                                                             | MSFD activities                                                                                                  | Observations                                                                                                                           |
| 1    | Canalisation                                                | Canalisation                                                                                                | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Physical restructuring of rivers, coastline or<br>seabed (water management)                                      | Includind disturbed area based on expert judgment                                                                                      |
| 2    | Coastal_protection_works                                    | Coastal_protection_works                                                                                    | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Physical restructuring of rivers, coastline or seabed (water management)                                         | Include just disturbed areas based on expert judgment<br>(dikes, damms, other constructions, beach<br>nourishment considered "sealed") |
| 3    | Disposal sites for dredged material                         | Disposal sites for dredged material                                                                         | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Physical restructuring of rivers, coastline or seabed (water management)                                         |                                                                                                                                        |
| 4    | Sediment extraction sites                                   | Sediment extraction sites                                                                                   | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Physical restructuring of rivers, coastline or seabed (water management)                                         |                                                                                                                                        |
| 5    | Trawling (pelagic and beam trawl)                           | Trawling (pelagic and beam trawl)                                                                           | Physical disturbance                                                                                                                                                         | Trawling intensity (3-High ,2- Medium,1- L-<br>low)                                                                                                                                                                                                        | Extraction of living resources                                                                                   | estimations based on partial VMS data                                                                                                  |
| 6    |                                                             | Stationary uncovered pound nets                                                                             | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Extraction of living resources                                                                                   | estimations based on partial data                                                                                                      |
| 7    | Small-scale fishing                                         | Set gillnets                                                                                                | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Extraction of living resources                                                                                   | estimations based on partial data                                                                                                      |
| 8    | Shina scare rishing                                         | Small-scale fishing (traps, seine, manual fishing etc)                                                      | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Extraction of living resources                                                                                   | estimations based on partial data                                                                                                      |
| 9    | Off-shore oil and gaz installation                          | Off-shore oil and gaz installation                                                                          | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Theme Extraction of non-living resources                                                                         |                                                                                                                                        |
| 10   | Drilling                                                    | Drilling                                                                                                    | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Theme Extraction of non-living resources                                                                         |                                                                                                                                        |
| 11   | Oil and gas pipelines                                       | Oil and gas pipelines                                                                                       | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Theme Extraction of non-living resources                                                                         |                                                                                                                                        |
| 12   | Industrial and commercial ports                             | Industrial and commercial ports                                                                             | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Transport                                                                                                        | Includind disturbed area based on expert judgment                                                                                      |
| 13   | Anchorage areas                                             | Anchorage areas                                                                                             | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Transport                                                                                                        |                                                                                                                                        |
|      |                                                             |                                                                                                             | Multipressures (physical disturbance/contaminants/nutrients                                                                                                                  | Intensity                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                                        |
| 14   | Shipping intensity                                          | Shipping intensity                                                                                          | etc)                                                                                                                                                                         |                                                                                                                                                                                                                                                            | Transport                                                                                                        |                                                                                                                                        |
| 15   | Contaminants in sediments                                   | CHASE                                                                                                       | Input of other substances (e.g. synthetic substances, non-<br>synthetic substances, radionuclides) — diffuse sources, point<br>sources, atmospheric deposition, acute events | Integrated assessment of the combined effects<br>of multiple chemical substances using a multi-<br>metric indicator-based assessment tool (CHASE<br>in sediments) - points data interpolation, 5<br>classes (1-High, 2-God, 3-Moderate, 4-Poor, 5-<br>Bad) | Urban and industrial uses                                                                                        | 2017-2019                                                                                                                              |
| 16   |                                                             | DIP                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 17   |                                                             | DIN                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 18   |                                                             | CBO5                                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 19   | Nutrients (DIP, DIN, CBO5, Porg, TOC, TN, TSS)              | Porg                                                                                                        | Input of nutrients — diffuse sources, point sources                                                                                                                          | Points data interpolation                                                                                                                                                                                                                                  | in-situ data                                                                                                     | 2017-2019                                                                                                                              |
| 20   |                                                             | тос                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 21   |                                                             | TN                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 22   |                                                             | TSS                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 23   |                                                             | Cu                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 24   |                                                             | Cd                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 25   | Heavy metals (Cu, Cd, Pb, Ni, Cr)                           | Pb                                                                                                          | Input of other substances (e.g. synthetic substances, non-                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 26   |                                                             | Ni synthetic substances, radionuclides) – diffuse sour<br>Sources, atmospheric deposition, acute ever<br>Cr |                                                                                                                                                                              | Points data interpolation                                                                                                                                                                                                                                  | in-situ data                                                                                                     | 2017-2020                                                                                                                              |
| 27   |                                                             |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 28   | Total petrolium hydrocarbons (TPH)                          | TPH                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                        |
| 29   | Touristic activities (nautical sports, diving, fishing etc) | Touristic activities (nautical sports,<br>diving, fishing etc)                                              | Multipressures (physical disturbance/contaminant/nutrients,<br>marine litter etc)                                                                                            | Presence/absence and intensity (3 - High, 2-<br>Medium, 1 - Low) based on number of tourists,<br>LAU level (0-5 m depth)                                                                                                                                   | Tourism and leisure                                                                                              | Includind disturbed area based on expert judgment                                                                                      |
| 30   | Touristic infrastructures (marinas)                         | Touristic infrastructures (marinas)                                                                         | Physical disturbance                                                                                                                                                         | Presence/absence                                                                                                                                                                                                                                           | Tourism and leisure                                                                                              | Includind disturbed area based on expert judgment                                                                                      |
| 31   | Input of water                                              | Input of water                                                                                              | Contaminants/ nutrients/heavy metals/fresh water/ organic matter                                                                                                             | presence/absence/intensity (3 -High, 2-<br>Medium, 1 - Low)                                                                                                                                                                                                | Urban and industrial uses                                                                                        | Includind disturbed area based on expert judgment                                                                                      |
|      |                                                             |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                            | and the second |                                                                                                                                        |




٩.





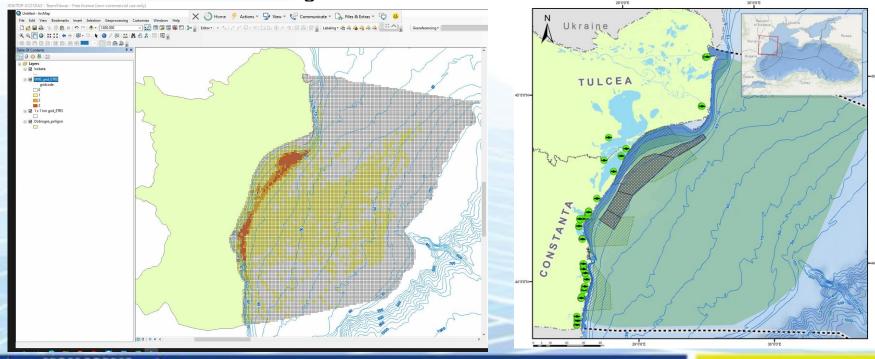



- Physical restructuring of rivers, coastline or seabed (water management)
   Pressure Physical disturbance Include just disturbed areas based on expert judgment (dikes, damms, other constructions, beach nourishment considered "sealed")
- Canalisation
- Coastal\_protection\_works
- Disposal sites for dredged material
- Sediment extraction sites









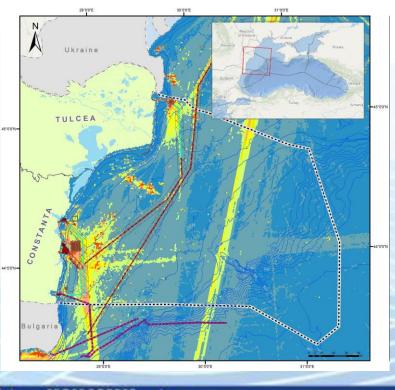



2. Extraction of living resources

#### Pressure - Physical disturbance

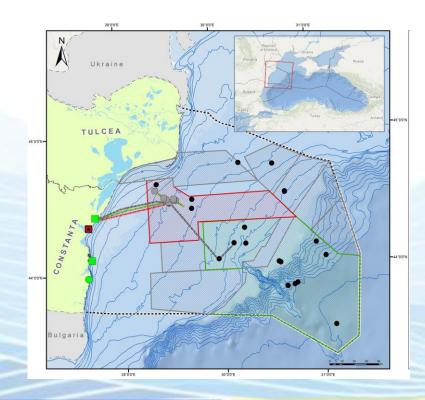
- Trawling (pelagic and beam trawl) Trawling intensity (3-High ,2-Medium,1- L-low) estimations based on partial VMS data
- Small-scale fishing











#### 2. Transport

**Pressure** - Multipressures (physical disturbance/contaminants/nutrients etc) – industrial and commercial ports, anchorages areas, shipping intensity)

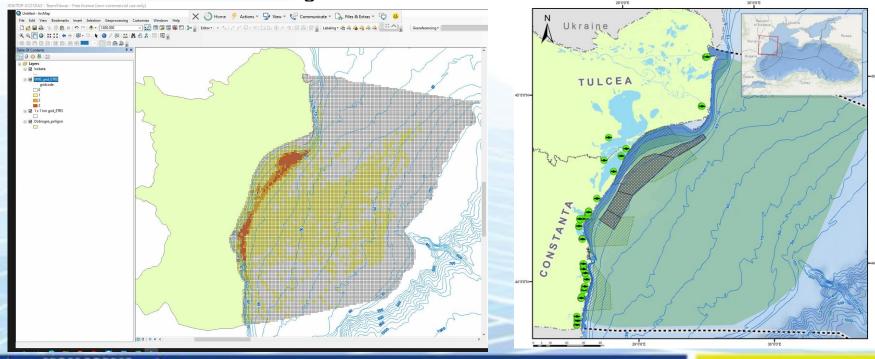


3. Extraction of non-living resources

**Pressure** - Physical disturbance – Drilling, off-shore oil and gas installation, oil and gas pipelines










2. Extraction of living resources

#### Pressure - Physical disturbance

- Trawling (pelagic and beam trawl) Trawling intensity (3-High ,2-Medium,1- L-low) estimations based on partial VMS data
- Small-scale fishing







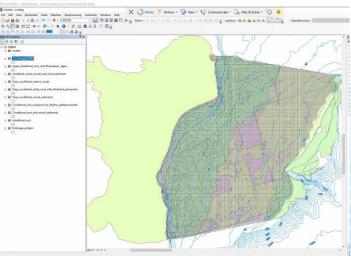



- Input of nutrients diffuse sources, point sources
- Input of other substances (e.g. synthetic substances, non-synthetic substances, radionuclides) diffuse sources, point sources, atmospheric deposition, acute events










#### Step 3 – Identify the ecosystem compounds

#### • Benthic habitats

| Code | Ecosystem component                                               | Representation   | Data sources                  |
|------|-------------------------------------------------------------------|------------------|-------------------------------|
| 1    | Infralittoral rock (1-18m)                                        | presence/absence | EuSeaMap 2019, NIMRD database |
| 2    | Upper_infralittoral_rock_with_Photophylic_algae                   | presence/absence | EuSeaMap 2019, NIMRD database |
| 3    | Infralittoral coarse, mixed, sand, mud sediment (1-20m)           | presence/absence | EuSeaMap 2019, NIMRD database |
| 4    | Circalittoral rock overgrown by Mytilus galloprovincialis         | presence/absence | EuSeaMap 2019, NIMRD database |
| 5    | Circalittoral_mud_and_mixed_sediments                             | presence/absence | EuSeaMap 2019, NIMRD database |
| 6    | Deep circalittoral shelly mud with Modiolula phaseolina (60-120m) | presence/absence | EuSeaMap 2019, NIMRD database |
| 7    | Deep_circalittoral_mixed_sediments                                | presence/absence | EuSeaMap 2019, NIMRD database |
| 8    | Deep circalittoral suboxic muds                                   | presence/absence | EuSeaMap 2019, NIMRD database |
|      |                                                                   |                  |                               |

- Pelagic habitats
- Phytoplankton/Zooplankton/ Macrophytes
- The most important fish species
- Marine mammals
- Birds distribution











## Step 4 – Preparing the sensitivity weights matrix - representing the sensitivity of each ecosystem component to each stressor (Based on Halpern et al.'s model)

- The vulnerability measure rank for each stressor/ ecosystem compound was established based on expert opinion

| >  | Cut                                               |                                          |       |                                    |                                                               |                                                                 | a harris                                                           |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |
|----|---------------------------------------------------|------------------------------------------|-------|------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|---------------------------|------------------------------------------------|----------|-----------|----------|---------|
| 'n | Copy ~                                            | Calibri                                  | v     | 11 - P                             |                                                               | = =   🤊                                                         | SP W                                                               | rap Text<br>erge & Center ∽                                                                        | General                                                                  | ~                                    |                           | Цø                                             | Normal 2 |           | lormal   | -       |
| <  | Format Painte                                     | H B I U ∖                                | · 🖽 • | · 🔗                                | <u>A</u> ~   =                                                | = = •                                                           | 🖭 🖽 М                                                              | erge & Center 👻                                                                                    | \$ ~ % 9                                                                 |                                      | Conditional<br>Formatting | <ul> <li>Format as</li> <li>Table ~</li> </ul> | Bad      | C         | Good     | Ŧ       |
| 3  | pboard                                            | 15                                       | Font  |                                    | 5                                                             |                                                                 | Alignment                                                          | 5                                                                                                  | Numbe                                                                    |                                      |                           |                                                | Style    | 5         |          |         |
|    | -                                                 | × √ fx                                   | Macr  | ofite                              |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |
|    |                                                   | 0                                        | 0     | н                                  |                                                               |                                                                 | к                                                                  | L.                                                                                                 | н                                                                        | н                                    | 0                         | ,                                              | 9        |           | 5        | T U     |
|    | MAREA NEAGRI                                      |                                          |       | Infralittora<br>I rock (1-<br>10m) | Upper-<br>infralittoral<br>rock<br>dominated by<br>Cystoseira | Infralittoral<br>coarse,<br>mixed, sand,<br>med<br>sediment (1- | Circalittoral<br>rock<br>orcegeowa by<br>Mytiles<br>galleproviscia | Mussel beds of<br>Mytilus<br>galloprovincialis on<br>circulittoral wed and<br>mixed sediments (20- | Deep<br>circalittoral<br>skelly nod with<br>Modiolula<br>phaseoliaa (50- | Deep<br>circulittoral<br>suboxic and |                           | Mamifere<br>marine                             | Pesti    | Macrofite | Pelagic  | obs     |
| ŀ  | oaltistorii sikor opecii<br>Perterbarea zpaciilor | Gradul de certitedes                     |       | _                                  |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          | proper  |
| L  | (de coumple, In                                   | Freerosta aparitici                      |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      | 0                         | 1                                              |          |           |          | propor  |
| 1  | locarile de înmultire,                            | Impact functional                        |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      | 1                         | 0                                              |          |           |          |         |
| L  | de odikati zas de<br>Milnire) pria prezuen        | Resistants<br>Reference (and)            |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      | 2                         | 0                                              |          | -         | 2        |         |
| L  |                                                   | Gradul de certitudise                    |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      | 0                         | 0                                              |          |           |          |         |
| Γ  | Scosteres dis modial                              | Suprafata (km2)                          |       | 6                                  |                                                               | 2                                                               |                                                                    | 1                                                                                                  |                                                                          |                                      | 0                         | 4                                              | 4        |           | 2        |         |
| L  | marin pou<br>mortalitatea/vättimäril              | Freeworks sparities                      |       | 0                                  |                                                               | 0                                                               |                                                                    | 2                                                                                                  |                                                                          |                                      |                           | 0                                              |          | -         |          |         |
| ŀ  | s seor speci stibutice                            | Registents                               |       | 2                                  |                                                               | 2                                                               |                                                                    |                                                                                                    |                                                                          |                                      | 1                         | 2                                              | 2        |           |          |         |
|    | pris parceit constrais                            | References (sei)                         |       | 2                                  |                                                               | 2                                                               |                                                                    | 2                                                                                                  |                                                                          |                                      | 1                         | 0                                              | 2        |           | 1        |         |
| ŀ  | sau sportiv și alte                               | Gradul de certitudioe<br>Suprofoto (km2) |       | - '                                |                                                               | 1                                                               |                                                                    |                                                                                                    |                                                                          |                                      | 1                         | 5                                              |          |           | 4        |         |
| L  | Perturbarea fizidi a                              | Freemants sparitisi                      |       |                                    |                                                               | 4                                                               |                                                                    | 4                                                                                                  |                                                                          |                                      |                           |                                                |          |           |          |         |
| L  | fundski mirii                                     | Impact functional                        |       |                                    |                                                               | 1                                                               |                                                                    | 1                                                                                                  |                                                                          |                                      |                           |                                                |          |           |          |         |
| L  |                                                   | Redictests                               |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      | _                         |                                                |          |           |          |         |
| L  |                                                   | Refectre (sei)<br>Gradul de continedire  |       |                                    |                                                               | -                                                               |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |
| ľ  | Pierderi fizico (da                               | Suprafata (km2)                          |       | 3                                  | 5                                                             | 2                                                               |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           | 0        |         |
| L  | coazo zobimbilnii<br>permenente o                 | Freenasts sparitial<br>Impact functional |       | 4                                  | 4                                                             | 4                                                               |                                                                    |                                                                                                    |                                                                          |                                      | _                         |                                                |          |           | 2        | in case |
| L  |                                                   | Registenta                               |       | 3                                  | 3                                                             | 3                                                               |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |
| L  | morfologici fundului                              | Rafacora (sei)                           |       | 3                                  | 3                                                             | 2                                                               |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                | 1        |           |          |         |
| h  | ntriji i cetrodici                                | Gradul de continedire<br>Seprafoto (km2) |       |                                    |                                                               | 3                                                               |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           | 1        |         |
| I  |                                                   | Freerosts sporitisi                      |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          | <u> </u>  |          |         |
| I  | Modificari sic                                    | Impact functional                        |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |
| ľ  | condiciilor hidrologice                           | Relistenta<br>Refacero (sei)             |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          | <u> </u>  |          |         |
| I  |                                                   | Gradul de continedies                    |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          | <u> </u>  | <u> </u> |         |
| ٢  | Introduceres de                                   | Saprafata (km2)                          |       | 0                                  | 1                                                             | 0                                                               |                                                                    | 0                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              | 0        |           | 1 3      |         |
| 1  | NATIONAL - PARTY                                  | Processes sporitial<br>Impact functional |       | 0                                  | 2                                                             | 0                                                               |                                                                    | 0                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              |          | -         |          |         |
| 1  |                                                   | Rezistenta                               |       | 0                                  | 8                                                             | 0                                                               |                                                                    | 0                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              |          |           | 1        |         |
| L  | dependent standarder                              | Refacero (sei)                           |       | 0                                  | 2                                                             | 0                                                               |                                                                    | 0                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              | 0        | -         | 2        |         |
| ŀ  |                                                   | Gradul da continudina<br>Saprafuta (km2) |       | 0                                  |                                                               | 0                                                               |                                                                    | 0                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              |          | -         |          |         |
| 1  | latroduceres-de                                   | Proceests sporitiei                      |       | 2                                  |                                                               | 2                                                               |                                                                    | 2                                                                                                  | 0                                                                        |                                      | ő                         | 0                                              |          |           | 2        |         |
| 1  |                                                   | Impact functional                        |       | 1                                  | 0                                                             | 1                                                               |                                                                    |                                                                                                    | 0                                                                        |                                      | 0                         | 0                                              | 4        | -         | 3        |         |
| 1  |                                                   | Relaterta<br>Refacere (ani)              |       |                                    | 0                                                             | 2                                                               |                                                                    | 2                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              |          |           |          |         |
| L  |                                                   | Gradul da contitudina                    |       | 2                                  | 0                                                             | 2                                                               |                                                                    | 2                                                                                                  | 0                                                                        |                                      | 0                         | 0                                              |          |           | 2 2      |         |
| ſ  | Introducerco ultor<br>cubstante (de es.           | Seprefeta (km2)<br>Precreata aparitiei   |       | 0                                  | 6                                                             | 2                                                               |                                                                    | 0                                                                                                  | 2                                                                        |                                      | 0                         | 1                                              |          | -         | 1 2      |         |
| L  |                                                   | Precents spatile<br>Impact functional    |       |                                    | 3                                                             | 3                                                               |                                                                    |                                                                                                    | 1                                                                        |                                      | 0                         | 5                                              | 3        |           |          |         |
| 1  | substance nesintatice,                            | Registente                               |       | 1                                  | 1                                                             | 1                                                               |                                                                    |                                                                                                    | 1                                                                        |                                      | 0                         | 1                                              |          |           | 1 3      |         |
| 1  |                                                   | Refacere [ae]                            |       | 1                                  | 8                                                             | 1                                                               |                                                                    | 8                                                                                                  | 8                                                                        |                                      | 0                         | 8                                              |          |           |          | 1       |
| ŀ  | difute, retro                                     | Gradul da contitudina<br>Seprafota (km2) |       | 2                                  | 2                                                             | 3                                                               |                                                                    | 2                                                                                                  | 2                                                                        |                                      | 1                         |                                                |          | -         |          |         |
| 1  | Introduceros de                                   | Frecrenta aparitiei                      |       | 8                                  | 2                                                             | 3                                                               |                                                                    | 3                                                                                                  | 3                                                                        |                                      | 1                         | 8                                              | 2        |           |          |         |
|    | desemi (desevri solido,                           | Impact functional<br>Registerts          |       | 1                                  |                                                               |                                                                 |                                                                    |                                                                                                    | 1                                                                        |                                      | 1                         | 1                                              |          |           |          | 1       |
| Ľ  | inclusin micro-                                   |                                          |       |                                    |                                                               |                                                                 |                                                                    |                                                                                                    |                                                                          |                                      |                           |                                                |          |           |          |         |

| Vulnerability measure    | Category                     | Rank | Descriptive notes                                                                           | Example                                                          |
|--------------------------|------------------------------|------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Scale (km <sup>2</sup> ) |                              |      |                                                                                             |                                                                  |
|                          | no threat                    | 0    |                                                                                             |                                                                  |
|                          | <1                           | 1    |                                                                                             | anchor damage                                                    |
|                          | 1-10                         | 2    |                                                                                             | single trawl drag                                                |
|                          | 10-100                       | 3    |                                                                                             | sediment run-off from<br>deforestation                           |
|                          | 100-1,000                    | 4    |                                                                                             | land-based pollution from<br>run-off of large rivers             |
|                          | 1,000-10,000                 | 5    |                                                                                             | an invasive species                                              |
|                          | >10,000                      | 6    |                                                                                             | sea surface temperature change                                   |
| Frequency                |                              |      |                                                                                             |                                                                  |
|                          | never occurs                 | 0    |                                                                                             |                                                                  |
|                          | rare                         | 1    | infrequent enough to affect long-term<br>dynamics of a given population or<br>location      | large oil spill                                                  |
|                          | occasional                   | 2    | frequent but irregular in nature                                                            | toxic algal blooms                                               |
|                          | annual or regular            | 3    | frequent and often seasonal or<br>periodic in nature                                        | runoff events due to seasonal                                    |
|                          | persistent                   | 4    | more or less constant year-round,<br>lasting through multiple years or<br>decades           | persistent hypoxic zones                                         |
| Functional impact        |                              |      |                                                                                             |                                                                  |
|                          | no impact                    | 0    |                                                                                             |                                                                  |
|                          | species (single or multiple) | 1    | one or more species in a single or<br>different trophic levels                              | ship strikes on whales                                           |
|                          | single trophic level         | 2    | multiple species affected; entire<br>trophic level changes                                  | overharvest of multiple species<br>within the same trophic guild |
|                          | >1 trophic level             | 3    | multiple species affected; multiple<br>trophic levels change                                | overharvest of key species from<br>multiple trophic guilds       |
|                          | entire community             | 4    | cascading effect that alter the entire<br>ecosystem                                         | ocean temperature increase and<br>fatal bleaching of coral reefs |
| Resistance               |                              |      |                                                                                             |                                                                  |
|                          | no impact                    | 0    |                                                                                             |                                                                  |
|                          | high                         | 1    | no significant change in biomass,<br>structure, or diversity until extreme<br>threat levels | trawling on soft-sediment<br>communities                         |
|                          | medium                       | 2    | moderate intensities or frequencies of<br>a threat lead to change                           | effects of industrial pollution<br>run-off on coastal species    |
|                          | low                          | 3    | slightest occurrence of a threat causes<br>a change, or all-or-nothing threats              |                                                                  |
| Recovery time (years)    |                              |      |                                                                                             |                                                                  |
|                          | no impact                    | 0    |                                                                                             |                                                                  |
|                          | <1                           | 1    |                                                                                             | kelp recovery after disturbance                                  |
|                          | 1-10                         | 2    |                                                                                             | short-lived species recovery<br>from episodic toxic pollution    |
|                          | 10-100                       | 3    |                                                                                             | long-lived species recovery from<br>overfishing                  |
|                          | >100                         | 4    |                                                                                             | deep sea coral recovery after<br>trawl damage                    |
| Certainty                | none                         | 0    |                                                                                             |                                                                  |
|                          | low                          | 1    | very little or no empirical work exists                                                     |                                                                  |
|                          | medium                       | 2    | some empirical work exists or expert<br>has some personal experience                        |                                                                  |
|                          | high                         | 3    | body of empirical work exists or the<br>expert has direct personal<br>experience            |                                                                  |
|                          | very high                    | 4    | extensive empirical work exists or<br>the expert has extensive personal<br>experience       |                                                                  |









#### Step 5 - Loading stressor and ecosystem component data

- The EcoImpactMapper reads all stressor and ecosystem component data as regular grids from commaseparated value (CSV) files.
- Spatial data are interpreted as tables and must have at least three columns:
  - $\checkmark\,$  X coordinate of grid cell center
  - ✓ Y coordinate of grid cell center
  - ✓ One or more columns representing stressor intensities or ecosystem components.
- Data can be uploaded like presence/absence (1/0) or continuous data

|          | A                           | в                          | с                        | D   | E   | F | G | н              | 1.1                 | J                    | к                     |    | м |
|----------|-----------------------------|----------------------------|--------------------------|-----|-----|---|---|----------------|---------------------|----------------------|-----------------------|----|---|
| - 4      | OBJECTID                    | X                          | Y                        |     |     |   |   | lagic hab coas |                     |                      | Shape Area            | L. | M |
| 2        | OBJECTID                    | 2658307.479                | 5845787.40               |     | 0 0 |   |   |                | elagic_nab_sne<br>0 | snape_Lengtn<br>4000 | 5nape_Area<br>1000000 |    |   |
| 3        | 2                           | 2658307.479                | 5846787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 4        | 3                           | 2658307.479                | 5847787.40               |     |     |   | 1 | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 5        | 4                           | 2658307.479                | 5848787.40               |     |     |   | 1 | 0              | ő                   | 4000                 | 1000000               |    |   |
| 6        | 5                           | 2658307.479                | 5849787.40               | 1   | 0   | ō | 1 | Ō              | ō                   | 4000                 | 1000000               |    |   |
| 7        | 6                           | 2657307.479                | 5845787.40               | 1   | 0   | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 8        | 7                           | 2657307.479                | 5846787.40               | 1 1 | 1 0 | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 9        | 8                           | 2657307.479                | 5847787.40               | 1 1 | 1 0 | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 10       | 9                           | 2657307.479                | 5848787.40               |     | 1 0 |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 11       | 10                          | 2657307.479                | 5849787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 12       | 11                          | 2657307.479                | 5850787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 13       | 12                          | 2657307.479                | 5851787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 14       | 13                          | 2657307.479                | 5852787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 15       | 14                          | 2657307.479                | 5853787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 16       | 15                          | 2657307.479                | 5854787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 17       | 16<br>17                    | 2657307.479                | 5855787.40               |     | 0   |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 18       | 17                          | 2657307.479                | 5856787.40               |     |     |   | 1 | 0              |                     |                      |                       |    |   |
| 19<br>20 | 18                          | 2657307.479 2657307.479    | 5857787.40<br>5858787.40 |     | 0   |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 20       | 19                          | 2657307.479                | 5859787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 100000                |    |   |
| 22       | 20                          | 2657307.479                | 5860787.40               |     |     |   |   | 0              | 0                   | 4000                 | 100000                |    |   |
| 23       | 21                          | 2657307.479                | 5861787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 24       | 23                          | 2657307.479                | 5862787.40               |     | 0   |   |   | 0              |                     | 4000                 | 1000000               |    |   |
| 25       | 24                          | 2657307.479                | 5863787.40               |     | i õ |   |   | ŏ              | ŏ                   | 4000                 | 1000000               |    |   |
| 28       | 25                          | 2657307.479                | 5864787.40               |     |     |   | 1 | 0              | ŏ                   | 4000                 | 1000000               |    |   |
| 27       | 28                          | 2657307.479                | 5865787.40               |     | o o |   | i | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 28       | 27                          | 2657307.479                | 5866787.40               |     | 0 0 |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 29       | 28                          | 2657307.479                | 5867787.40               | 1 0 | 0 0 | ō | 1 | ō              | 1                   | 4000                 | 1000000               |    |   |
| 30       | 29                          | 2657307.479                | 5868787.40               | 1 ( | 0 0 | 0 | 1 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 31       | 30                          | 2656307.479                | 5845787.40               | 1 1 | 1 0 | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 32       | 31                          | 2656307.479                | 5846787.40               | 1 1 | 1 0 | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 33       | 32                          | 2656307.479                | 5847787.40               | 1 ' | 1 0 | 0 | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 34       | 33                          | 2656307.479                | 5848787.40               |     | 1 0 |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 35       | 34                          | 2656307.479                | 5849787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 36       | 35                          | 2656307.479                | 5850787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 37       | 38                          | 2656307.479                | 5851787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 38       | 37                          | 2656307.479                | 5852787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 39       | 38                          | 2656307.479                | 5853787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 40       | 39                          | 2656307.479                | 5854787.40               |     | 0   |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 41<br>42 | 40                          | 2656307.479<br>2656307.479 | 5855787.40<br>5856787.40 |     | 0 0 |   | 1 | 0              | 0                   | 4000 4000            | 1000000               |    |   |
| 42       | 41                          | 2656307.479                | 5857787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 44       | 42                          | 2656307.479                | 5858787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 45       | 44                          | 2656307.479                | 5859787.40               |     |     |   |   | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 46       | 45                          | 2656307.479                | 5860787.40               |     |     |   |   | 0              | ő                   | 4000                 | 1000000               |    |   |
| 47       | 48                          | 2656307.479                | 5861787.40               |     |     |   |   | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 48       | 47                          | 2656307.479                | 5862787.40               |     |     |   |   | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 49       | 48                          | 2656307.479                | 5863787.40               |     |     |   |   | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| 50       | 49                          | 2656307.479                | 5864787.40               |     | 0 0 |   |   | 0              | ō                   | 4000                 | 1000000               |    |   |
| 51       | 50                          | 2656307.479                | 5865787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 1000000               |    |   |
| 52       | 51                          | 2656307.479                | 5866787.40               |     | 0 0 |   | 1 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 53       | 52                          | 2656307.479                | 5867787.40               |     | 0 0 |   | 1 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 54       | 53                          | 2656307.479                | 5868787.40               |     |     |   | 1 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 55       | 54                          | 2656307.479                | 5869787.40               |     |     |   |   | 0              | 1                   | 4000                 | 1000000               |    |   |
| 56       | 55                          | 2656307.479                | 5870787.40               |     | 0 0 |   |   | 0              | 1                   | 4000                 | 1000000               |    |   |
| 57       | 56                          | 2656307.479                | 5871787.40               |     |     |   | 0 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 58<br>59 | 57                          | 2656307.479 2656307.479    | 5872787.40               |     | 0 0 |   | 0 | 0              | 1                   | 4000                 | 1000000               |    |   |
| 60       | 59                          | 2656307.479                |                          |     |     |   |   | 0              | 1                   | 4000                 | 1000000               |    |   |
| 61       | 59                          | 2655307.479                | 5846787.40               |     |     |   | 1 | 0              | 0                   | 4000                 | 100000                |    |   |
| 62       | 61                          | 2655307.479                | 5848787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 63       | 62                          | 2655307.479                | 5849787.40               |     |     |   |   | 0              | 0                   | 4000                 | 1000000               |    |   |
| 64       | 63                          | 2655307.479                | 5850787.40               |     |     |   |   | 0              | ő                   | 4000                 | 1000000               |    |   |
| 65       | 64                          | 2655307.479                | 5851787.40               |     | 0   |   | 1 | 0              | ő                   | 4000                 | 1000000               |    |   |
| 66       | 65                          | 2655307.479                | 5852787.40               |     |     |   | 1 | ŏ              | ŏ                   | 4000                 | 1000000               |    |   |
| 67       | 66                          | 2655307.479                | 5853787.40               |     |     |   |   | ő              | ŏ                   | 4000                 | 1000000               |    |   |
| - 00     | 07                          | 0000000 170                | C104707.40               |     |     |   |   |                |                     | 1000                 | 1000000               |    |   |
|          | $\rightarrow$ $\rightarrow$ | Habitats_                  | 1 (1                     | Ð   |     |   |   |                |                     |                      |                       |    |   |





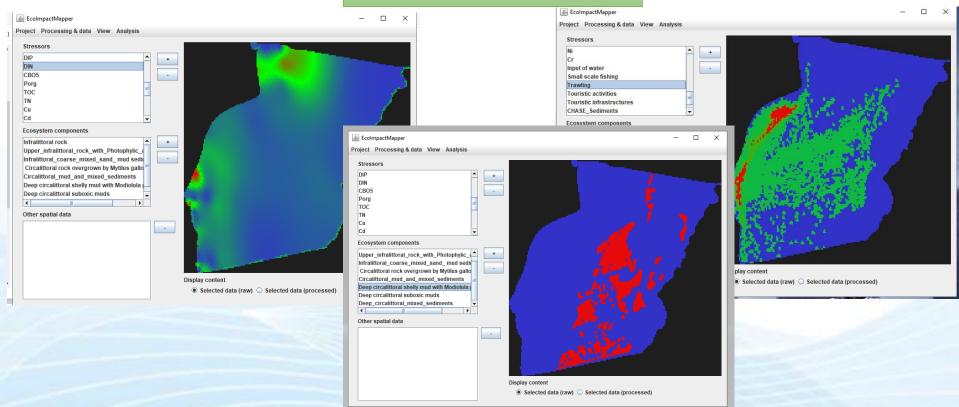




#### Step 6 - Loading sensitivity weights

# - from a CSV file where columns represent ecosystem components and rows represent stressors

|    | A                                                           | В                | С                          | D                                                  | E                                         | F                                                            | G                                        | Н                                               | I                                     | J                                                                                                               | - |
|----|-------------------------------------------------------------|------------------|----------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|
| 1  | SensitivityScores                                           |                  |                            |                                                    |                                           |                                                              |                                          |                                                 |                                       |                                                                                                                 |   |
| 2  |                                                             |                  |                            |                                                    |                                           |                                                              |                                          |                                                 |                                       |                                                                                                                 |   |
|    |                                                             | Benthic habitats | Infralittoral rock (1-18m) | Upper infralittoral rock with<br>Photophylic algae | Infralittoral coarse,<br>mixed, sand, mud | Circalittoral rock overgrown<br>by Mytilus galloprovincialis | Circalittoral mud and<br>mixed sediments | Deep circalittoral shelly<br>mud with Modiolula | Deep circalittoral mixed<br>sediments | Deep circalittoral suboxic<br>muds                                                                              |   |
| з  |                                                             |                  |                            |                                                    | sediment (1-20m)                          | -, , ,                                                       |                                          | phaseolina (60-120m)                            |                                       |                                                                                                                 |   |
| 4  | Stressors                                                   | CODE             | 1                          | 2                                                  | 3                                         | 4                                                            | 5                                        | 6                                               | 7                                     | 8                                                                                                               |   |
| 5  | Canalisation                                                | 1                | 5                          | 5                                                  | 3                                         | 1                                                            | 1                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 6  | Coastal_protection_works                                    | 2                | 5                          | 5                                                  | 3                                         | 3                                                            | 3                                        | 0                                               | 0                                     | (                                                                                                               | 0 |
| 7  | Disposal sites for dredged material                         | 3                | 4                          | 4                                                  | 4                                         | 4                                                            | 4                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 8  | Sediment extraction sites                                   | 4                | 5                          | 5                                                  | 4                                         | 4                                                            | 4                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 9  | Trawling (pelagic and beam trawl)                           | 5                | 0                          | 0                                                  | 5                                         | 5                                                            | 5                                        | 1                                               | 1                                     | (                                                                                                               | 0 |
| 10 | Stationary uncovered pound nets                             | 6                | 1                          | 1                                                  | 3                                         | 1                                                            | 3                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 11 | Set gillnets                                                | 7                | 1                          | 1                                                  | 2                                         | 2                                                            | 2                                        | 0                                               | 0                                     | (                                                                                                               | 0 |
| 12 | Small-scale fishing (traps, seine, manual fishing etc)      | 8                | 2                          | 2                                                  | 1                                         | 1                                                            | 1                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 13 | Off-shore oil and gaz installation                          | 9                | 0                          | 0                                                  | C                                         | 4                                                            | 4                                        | 4                                               | 4                                     | 4                                                                                                               | 4 |
| 14 | Drilling                                                    | 10               | 0                          | 0                                                  | C                                         | 4                                                            | 4                                        | 4                                               | 4                                     |                                                                                                                 | 4 |
| 15 | Oil and gas pipelines                                       | 11               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2                                     |                                                                                                                 | 2 |
| 16 | industrial and commercial ports                             | 12               | 5                          | 5                                                  | 5                                         | 5                                                            | 5                                        | C                                               | 0                                     | (                                                                                                               | 0 |
|    | Anchorage areas                                             | 13               | 5                          | 5                                                  | 5                                         | 5                                                            | 5                                        | C                                               | 0                                     | (                                                                                                               | 0 |
| 18 | Shipping intensity                                          | 14               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2 2                                   |                                                                                                                 | 2 |
| 19 | CHASE                                                       | 15               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2 2                                   |                                                                                                                 | 2 |
| 20 | DIP                                                         | 16               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 21 |                                                             | 17               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
|    | CBO5                                                        | 18               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 23 | Porg                                                        | 19               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 24 | TOC                                                         | 20               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 25 | TN                                                          | 21               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 26 | TSS                                                         | 22               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 1                                               | . 1                                   | (                                                                                                               | 0 |
| 27 | Cu                                                          | 23               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2 2                                   |                                                                                                                 | 2 |
| 28 |                                                             | 24               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2 2                                   |                                                                                                                 | 2 |
| 29 | Pb                                                          | 25               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2                                     |                                                                                                                 | 2 |
| 30 | NI                                                          | 26               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2 2                                   |                                                                                                                 | 2 |
| 31 |                                                             | 27               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2                                     |                                                                                                                 | 2 |
| 32 |                                                             | 28               | 2                          | 2                                                  | 2                                         | 2                                                            | 2                                        | 2                                               | 2                                     |                                                                                                                 | 2 |
|    | Touristic activities (nautical sports, diving, fishing etc) | 29               | 3                          | 3                                                  | 3                                         | 3                                                            | 3                                        | 0                                               | 0                                     | (                                                                                                               | D |
|    | Touristic infrastructures (marinas)                         | 30               | 3                          | 3                                                  | 3                                         | 3                                                            | 3                                        | 0                                               | 0                                     | (                                                                                                               | 0 |
| 35 | input of water                                              | 31               | 5                          | 5                                                  | 5                                         | 3                                                            | 3                                        | C                                               |                                       |                                                                                                                 |   |
|    |                                                             |                  |                            |                                                    |                                           |                                                              |                                          |                                                 |                                       | The second se |   |










#### **EcolMpactMapper interface**

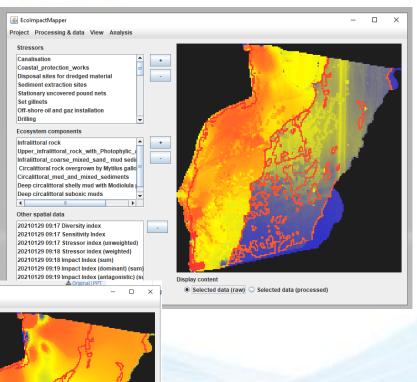


#### Step 7 - Spatial data preprocessing

- all stressor data layers were log(X+1)-transformed and rescaled so that the maximum of

each layer is 1










#### Step 8 - Calculate the spatial outputs

| SecompactMapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 🗆 X .                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Processing & data View Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
| Stressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |
| Canalisation<br>Casal_protection_works<br>Disposal sites for dredged material<br>Sediment extraction sites<br>Stationary uncovered pound nets<br>Set glinets<br>Off-shore oil and gaz installation<br>Drilling<br>Ecosystem components<br>Infralitoral rock, with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Infralitoral_cock_with_Photophylic_r<br>Deep circalitoral_mud_and_mixed_sediments<br>Deep circalitoral shelly mud with Modiolula<br>Deep circalitoral shelly mud with Modiolula |                                                                                                                                                                                                                                                                                                              |
| Cher spatial data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| 20210129 09:17 Diversity index<br>20210129 09:17 Stressor index (unweighted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 2                                                                                                                                                                                                                                                                                                     |
| 20210129 09:18 Stressor index (weighted)<br>20210129 09:18 Impact Index (sum)<br>20210129 09:19 Impact Index (dominant) (sum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EcolmpactMapper Project Processing & data View Analysis                                                                                                                                                                                                                                                      |
| 20210129 09:19 Impact Index (antagonistic) (st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stressors Canalisation Coastal_protection_works Disposal sites for dredged material                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sediment startaction sites<br>Stationary uncovered pound nets<br>Set gilinets<br>Off shore oil and gaz installation<br>Drilling                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ecosystem components                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | In Infraittoral rock<br>Upper, infraittoral_rock_with_Photophytic_<br>Infraittoral_coarse_mixed_sand_mud sedu<br>Circatitoral rock overgrown by Mytlus galie<br>Circatitoral, mud, and mixed, sedunents<br>Deep circatitoral suboxic muds<br>e                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20210129 05:17 Diversity index<br>20210129 06:17 Sensitivity index<br>20210129 06:17 Sensitivity index<br>20210129 06:18 Stressor index (unweighted)<br>20210129 06:18 Impact Index (sum)<br>20210129 06:18 Impact Index (sum)<br>20210129 06:19 Impact Index (suman)<br>20210129 06:19 Impact Index (suman) |



Display content

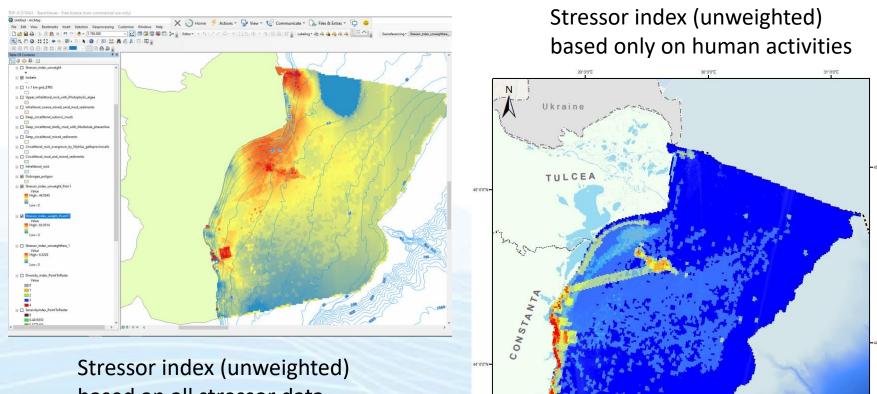
Selected data (raw)
Selected data (processed)

20210305 07:47 Impact Index (sum)

•

•




CROSSBORDER







#### Step 8 - Export the results and visualization in a GIS program



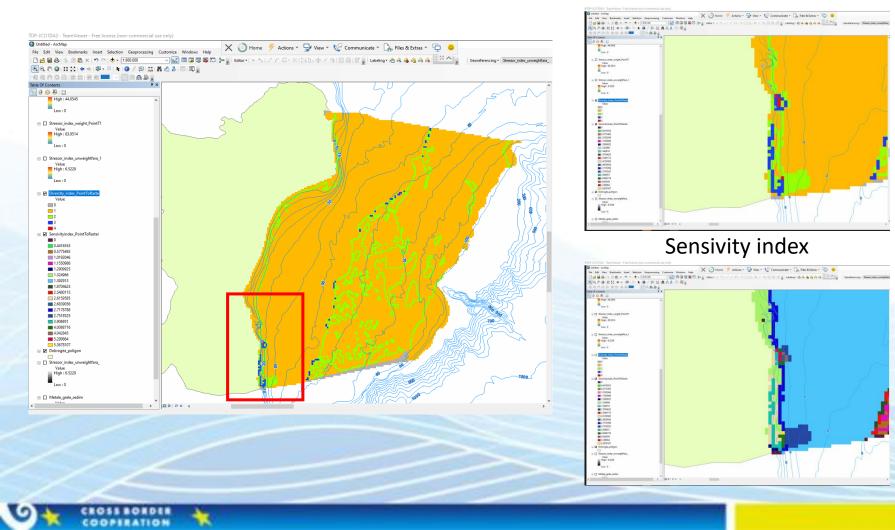
Bulgaria

20 30

29"0"0"E

based an all stressor data (including in-situ data)

31"0"0"E


30.00E

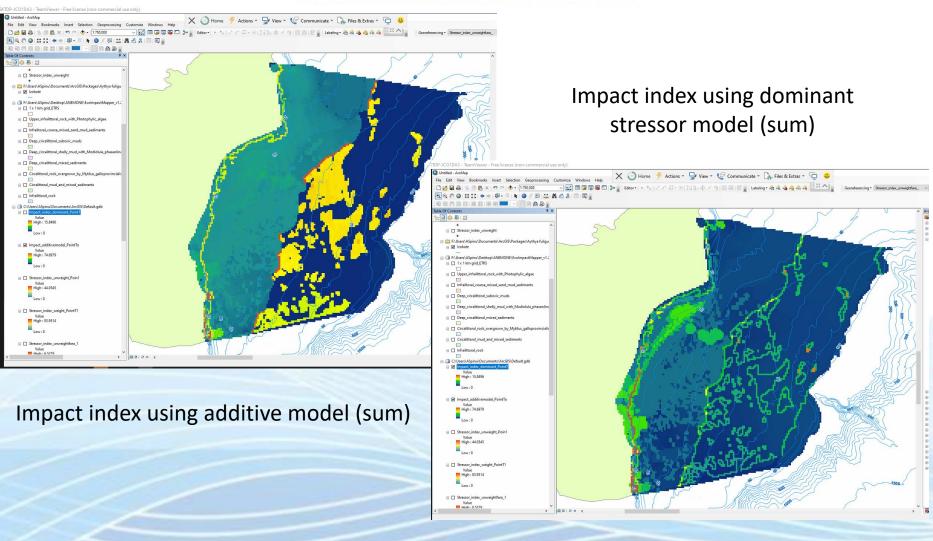






#### **Diversity index**






10101





#### Common borders. Common solutions.









#### **CONCLUSIONS**

- EIM tool can not replace general-purpose Geographical Information System (GIS) software or support the whole mapping process from raw data acquisition to publication-quality visualization
- can handle only one input data format (CSV) that should be obtain before in another GIS program. All spatial input data must have the same spatial resolution, extent and coordinate reference system and EIM is very sensitive to data format
- Have only basic visualization functions and no other functionalities (zoom-in, zoomout, select, query, labelling etc)



- once all data are correct uploaded is very easy to calculate diversity and impact indexes
- EcoImpactMapper simplify a time-consuming and difficult part of producing human impact maps

The EcoImpactMapper is thus not a stand-alone tool, but must be used in combination with other software for data preparation and for creating high quality maps









While the EcoImpactMapper makes it easier to use Halpern et al.'s model, considerable technical skills, scientific understanding are needed for data preparation. Original stressor and ecosystem component data come in many formats: Presenceabsence or continuous; raster data or points, lines and polygons; they may cover the whole study area (e.g. sea surface temperature anomalies) or only exist in small, isolated locations (e.g. offshore oil platforms). Some data sets may have gaps that must be filled.

- EIM achieves better results with a greater amount of data for both stressors and ecosystem components and for a larger area of interest
- For better results, the input data should be represented by continuous distribution or ranking (classify) rather than absence/presence (if they can be represented in this way)
  - ex: ecosystem components (fish/ mammals/phytoplankton/ birds) etc should be represented like biomass/ no of individuals rather than only absence/presence

The tool could be a very useful instrument for authorities/ stakeholders in the process of planning and decision making (ex. maritime spatial planning, designation of MPA, ICZM etc)









### WHAT'S NEXT ?

- To complete the data both for pressures/stressors and ecosystem components ideally we should have all the data
- To develop a methodology and algorithm in order to calculate and integrate the sensitivity scores weight based on Halpern model instead of "expert judgment scores" and raking the pressures intensity
- To extend the study area for entire Black Sea or at least for a regional part
  - EMODNET network (Human activities) has some data but not complete for BS basin

